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ABSTRACT
In a short span of time, cloud computing has grown, partic-
ularly for commercial web applications. But the cloud com-
puting has the potential to become a greater instrument
for scientific computing as well. A pay-as-you-go model
with minimal or no upfront costs creates a flexible and cost-
effective means to access compute resources. In this paper,
we carry out a study of the performance of the spatial data
interpolation of depth of the snow cover on the most widely
used cloud infrastructure (Amazon Elastic Compute Cloud).
The main characteristic of the interpolating computing is
the fact that it is time-consuming and data intensive; there-
fore utilizing parallel programming paradigm is eligible. The
geoprocessing is realized on two configuration provided by
Amazon EC2 and the results as well as performance of the
computing is presented in the article.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming, Parallel programming ; J.2
[Computer Applications]: Physical Science and Engi-
neering—Earth and atmospheric sciences

General Terms
Measurement, Performance

Keywords
Computing clouds, cluster computing, parallel computing,
inverse distance weighting, interpolation method
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1. INTRODUCTION
Cloud computing represents the next evaluation step of

on-demand information technology services and products.
Cloud computing offers new approaches for scientific com-
puting that forces the hardware and software investments on
large data centres by major commercial players. Geographi-
cal information systems as a scientific field using data inten-
sive computing can exploit the ongoing move towards data
processing frameworks to perform parallel computations.

In this paper we present solution for parallel geoprocessing
utilizing the processing power of computing cloud for com-
puting of the spatial data interpolation of missing points
in the surface. The main characteristics of the interpolat-
ing computing for such surface is the fact that it is time-
consuming; therefore utilizing parallel programming para-
digm is eligible.

A big attention in the world is given to the research of
prognosis whether the depth of snow cover depends on the
influence of global warming. The high performance comput-
ing resources are used for this purpose [10, 8]. But in most
cases, the processing relates to a much larger area than con-
tinents or countries [8, 11]. Determination of the snow cover
depth in a defined territory seems to be problematic because
of absence of raingauge stations. Therefore, the interpola-
tion methods for determination of the snow cover depth are
necessary where the data from nearby raingauge stations are
used.

Cloud computing is an emerging paradigm where com-
puting resources are offered over the Internet as scalable,
on-demand (Web) services. In this paper, we study the im-
plementation and behaviour of inverse distance weighted in-
terpolation (IDW) in cloud computing environment.

The rest of the paper is organized as follows. In Section
2 we present the background of spatial data interpolation
of depth of the snow cover. Next we briefly introduce used
model and its implementation in MPI standard. In Section
3 we describe the used Cloud and the preparation process
of instances. Section 4 shows experimental results and short
comparison of the models. The conclusions come in the last
section with an outlook to further work.
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Figure 1: IDW method for one point in the location
Zvolenská kotlina with 17 raingauge stations.

2. SPATIAL DATA INTERPOLATION
Interpolation is a mathematical function or method that

estimates the values at points where no measured values are
obtainable. It is not able to measure the values of the par-
ticular phenomenon in all points of the space, but only in
sample points. Spatial interpolation supposes the attribute
data points are continuous over space whicht allows for the
estimation of the prediction points at any location within
the data boundary. Furthermore the spatial interpolation
assumes that the phenomenon is spatially dependent, indi-
cating the values closer together are more likely to be similar
than the values farther apart.

The primary disadvantage of using the spatial interpola-
tion, especially for large and complex datasetsis is the fact
that it can still be an iterative, more time-consuming task,
requiring an adequate knowledge of underlying methods and
their implementation.

For our research we use the spatial interpolation for pre-
diction of depth of the snow cover. The depth of the snow
cover is a very variable meteorological element in the land-
scape. Many factors influence the depth, mainly snow pre-
cipitation, altitude, air temperature, profile of the relief, so-
lar power, cloudiness, air temperature inversion, etc. Snow
depth is measured by meteorological, climatological and pre-
cipitation stations once a day. However, during periods of
snowfall, it is measured every six hours to determine the
amount of recent snowfall.

The analysis of the snow cover is based on many con-
tinuous observations and measurements at the specific cli-
matological stations. All these gauging places can be ge-
ographically strictly characterized by the altitude, latitude
and longitude, as well as by the detailed characteristics of
the relief shape.

The aim of this work is the depth of the snow cover com-
puting in any point based on the geographical characteris-
tics of a specific geographical point in a modelled area. The

outcome is derived from the available data, which have been
obtained from available meteorological or climatological sta-
tions from a defined landscape area.

An actual geomorphological entity Zvolenská kotlina as
a part of Slovak Republic (see Figure 1), which is exactly
defined by its borders, has been chosen as an example of
the application of our designed method. We use the digital
terrain model of this entity. The 17 meteorological stations
of Slovak Hydrometeorogical Institute are situated in this
defined area and their long-term measurements are available
for our research. The input data are stored in large matrices.
The output values depend on the time-consuming computing
process.

2.1 Inverse Distance Weighting Interpolation
Method

As the basic interpolating method we used an inverse-
distance-weighting algorithm to interpolate the snow cover
measurements. This deterministic model, compared to e.g.
Kriging interpolating method, is relatively fast and easy
to compute, and straightforward to interpret. The IDW
method as a deterministic spatial interpolation model is one
of the most popular methods adopted by geoscientists and
geographers partly because it has been implemented in many
GIS tools [7].

2.2 Parallel Implementation of IDW Interpo-
lation

The general assumption of this method is that the at-
tribute values of any given pair of points are related to each
other, but their similarity is inversely related to the distance
between the two locations. The general idea of IDW is that
the attribute value of an un-sampled point is the weighted
average of known values within the neighbourhood, and the
weights are inversely related to the distances between the
location of un-sampled point and the location of its neigh-
bours. The value of inverse-distance weight is modified by a
constant power with increasing distance. This dependence
can be expressed by the following relationship (1).

y0 =

∑n
i=1

yi
dki∑n

i=1
1

dki

(1)

where y0 is value of un-sampled point; di denotes the dis-
tance between un-sampled point and sampled location i and
yi is given value at sampled locations i; n is the total number
of known points used in interpolation.

Value k is arbitrary positive real number called the weight-
ing exponent; if the parameter k equals to zero, there is no
decrease with distance, the weights will be the same and the
prediction will be the mean of all measured values; if the
k value is very high, only the immediate few surrounding
points have an influence on the prediction. For our experi-
ments we used k equals to 2 named as the method of inverse
square distance weighting, where the weighting function de-
pends on Euclidean distance and is radially symmetric about
each scatter point.

Our previous experience with parallel implementation of
interpolation methods on various systems, e.g. General-
Purpose computing on Graphics Processing Units [3], Multi-
core CPU design or Computational grid [2] indicates the use
of the cloud computing model based on MPI for distributed
systems. Moreover, to use for example Amazon Elastic
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Compute Cloud for anything other than bag-of-tasks type
of scientific applications, one would need to use some par-
allel middleware. MPI is a language-independent communi-
cations technique used to program parallel computers, i.e.
system with distributed memory. Amazon Elastic Compute
Cloud requires using a “free” MPI implementation. So we
used an open implementation OpenMPI of the MPI which
eases the creation of distributed applications by abstracting
the underlying network system.

To parallelize the snow cover model, the domain decompo-
sition method is used, where all parallel computing elements
(threads or processes) have equal or almost equal amount of
data to be processed. The parallel algorithm is very similar
to the serial algorithm with some additional routines added
to facilitate the communication between parallel computing
elements. All the parallel computing elements involved in
the parallel calculations basically perform the same compu-
tational operations [6].

The cloud computing implementation based on MPI uses
both point-to-point and collective communication. The MPI
interface is meant to provide essential virtual topology, syn-
chronization, and communication functionality between a
set of processes in a language-independent way. In MPI,
the entire code is launched on each node and it is controlled
what each code executes based on its node number in the
MPI universe along with an algorithm that distributes work,
e.g. a master/slave model. Programmers have to divide the
code in two parts for the master and for the slaves or to
recognize which code they have almost the same.

Master node and slaves’ nodes act as independent entities
communicating through passing messages. These communi-
cations can be asynchronous or synchronous.

Once the data types are defined, distributing of data among
processes is done by collective communication through func-
tions MPI Bcast and MPI Scatter and, if necessary, by send-
ing and receiving messages through functions MPI Send and
MPI Recv of MPI implementation. Data distribution is per-
formed in the Master node. Further mutual communication
between Slave nodes is not necessary. Slave nodes send the
particular results to the Master node which calculates the
final result.

/*--- Distributed MPI Slave Code ----*/

...

MPI_Recv(&index, 1, MPI_INT, 0, indexmsg,

MPI_COMM_WORLD, &status);

for(i = index; i < index + chunksize; i++) {

sum_up = 0;

sum_down = 0;

for(j =0; j < data_data_count; j++) {

distance = SQR(raster_x[i] - data_x[j]) +

SQR(raster_y[i] - data_y[j]);

sum_up += (data_value[j]/distance);

sum_down += (1.00/distance);

}

raster_value[i] = sum_up/sum_down;

}

MPI_Send(&raster_value[index], chunksize,

MPI_FLOAT,0, arraymsg, MPI_COMM_WORLD);

The following cloud computing model is just based on
this scheme. The computing speed-up of all techniques was
detected on different kinds of raster. The two-dimensional
raster changed in pixel density. One-dimensional matrices
represented each raster, because of format of GIS Grass
(Geographic Resources Analysis Support System) input file.
The sizes of the matrices varied from 1000×1000 to 10000×
10000. In one case (cloud large configuration), we made ex-
periment with matrix size 20000 × 20000.

3. USE OF COMPUTING CLOUD
Authors Mells and Grance define for the National Insti-

tute of Standards and Technology in [9] the cloud computing
as: The Cloud Computing refers to both the applications de-
livered as services over the Internet and the hardware and
systems software in the datacenters that provide those ser-
vices.

Cloud computing means both the applications delivered as
services over the Internet and the hardware and systems soft-
ware in the datacenters that provide those services. Private
companies offer various solutions of commercial computer
clouds, e.g. Amazon’s Elastic Compute Cloud EC2, Win-
dows Azure, IBM’s Blue Cloud, etc. The Window Azure is
primarily designed to run .NET framework programs. Our
previous programs have been written in low-level program-
ming language C. Therefore, Amazon’s Elastic Compute
Cloud is used to design a virtual computer cluster identi-
cal with the before used real computer cluster.

3.1 Amazon Elastic Compute Cloud
The major differences between the Amazon Web Services

environment and a typical supercomputing center are for ex-
ample; almost all HPC applications assume the presence of
a shared parallel filesystem between compute nodes, and a
head node that can submit MPI jobs to all of the worker
nodes. Running these applications in the cloud requires ei-
ther that the features of a typical HPC environment are
replicated in the cloud, or that the application is changed to
accommodate the default configuration of the cloud [5, 12].

Moreover, the right cloud service that best suits the pro-
gram must be chosen. The requirements include availability,
reliability, configurability, offered hardware solutions and
price. Of the total services offered on the market, we chose a
solution from Amazon, Amazon Web Services in particular
Amazon Elastic Compute Cloud (EC2). EC2 is a Web ser-
vice interface that provides computing and its change in size
of the cloud. It is designed to configure compute capacity as
simply as possible for developers which gives the users com-
plete control over their computing resources and lets them
run programs on the Amazon best computing environments.
Amazon EC2 reduces the time needed to acquire and run a
new instance of the server in seconds, allowing to quickly
adapt capacity, as upwards, so below [1]. Amazon EC2 also
introduced an interesting new pricing policy using for com-
puting capacity pay no monthly or activation fees. Price is
for real time use, when an instance is running, i.e. users pay
only for the capacity that their applications actually need
(pay-as-you go).

3.2 Preparation of Instances
Choosing the right operating system for instances as well

as configuration of system resources for the cloud is required
before starting to use a program for parallel computing.
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Figure 2: Instances in Amazon EC2. The ECU is
the CPU performance unit defined by Amazon.

There are different physical locations of the resources where
each of these locations contains different availability zones
being independent of each other in the event of failure. In
our case the instances were located in the area of West EU
(Ireland). Furthermore, a choice of operating system for the
cloud is necessary for using of the MPI middleware. Com-
mercial offerings of cloud services are not limited to the spe-
cific operating systems. We have chosen Linux distribution,
Ubuntu specifically. Ubuntu was chosen mainly because
of the previous experience of clusters solutions. There are
many different versions of Ubuntu available in EC2, for our
examinations we use instances ami-0e0f3d7a image (ubuntu-
hardy-10.10- amd64- server-2011100l). Instances are in EC2
classified into three categories that reflect their computing
power: standard instances (suitable for most applications),
high-memory instances (especially for high throughput ap-
plications), and high-cpu instances (suitable for compute in-
tensive applications). We have considered small instances in
our experiments, because they are the default instance size
and frequently demanded by users. We opted two instances
configuration:

• Micro – Intel (R) Xeon (R) Processor E5507 (4M Cache,
2.26 GHz, 4.80 GT / s Intel (R) QPI), 613 MB RAM,
8 GB HDD,

• Large – Intel (R) Xeon (R) Processor E5645 (12M
Cache, 2.40 GHz, 5.86 GT / s Intel (R) QPI), 7.5 GB
RAM, 8 GB HDD.

The number of instances has been created at 4, because of
the need for a master and three worker nodes to compare
with our previously published experiments, see Figure 2. In
addition, the number of instances has been determined by
the price, because the economic side of the cloud services
plays an important role. The price of each use depends
on the applied configuration, so the Micro configuration is
the bottommost and charged of $ 0.009 per hour when the
instance is running. The next step of the preparation of
instances is setting of security including private key genera-
tion, setting of ports, setting of security group, etc.

The following step of the cluster creation is the configura-
tion of instances to co-operate in the cluster. Each instance
represents one node of the cluster. One instance (labeled
master) was configured as the master node. The rest of
instances (labeled wn1, wn2, wn3) were configured as the
worker nodes. The configuration includes an installation of
some resource manager, scheduler, basic compiler and Open-
MPI. The Torque resource manager and the Maui scheduler
were used in this cluster to emulate the previously used clus-
ter with physical nodes.

Table 1: Execution Time Depending on Problem
Size (Raster Size) and Parallel Computer Architec-
ture

Matrix size
Measured time (s)

Micro Large Intel Computer
config. config. Dual Core cluster

1.0E + 06 0.7200 0.1600 0.2154 0.7900
4.0E + 06 2.5300 0.6100 0.8602 3.0000
9.0E + 06 6.5700 1.3500 1.9350 6.6700
1.6E + 07 11.3800 2.2500 3.4410 12.350
2.5E + 07 – 3.5000 5.3730 18.960
3.6E + 07 – 5.0400 7.7360 27.400
4.9E + 07 – 7.0300 10.530 37.660
6.4E + 07 – 6.7000 13.750 48.590
8.1E + 07 – 11.280 17.400 61.230
1.0E + 08 – 13.620 21.490 76.960
4.0E + 08 – 62.770 – –

4. EXPERIMENT AND RESULTS
In the experimental evaluation of our computing we fo-

cused on the performance improvements from the Amazon
EC2 using one small standard instance and one large stan-
dard instance in EU location.

To compare EC2 outcomes with a meaningful set of data,
we used our previously published results [4]. These results
were obtained from programs, which ran in our local clus-
ter having physical nodes and our multi-core processor. To
achieve comparable conditions, we used the same multi-core
processor, as used in cluster nodes (Intel Pentium D, Dual
Core, 2.66GHz, 2GB RAM, 100 GB HDD). As we had full
control of the cluster, there was no additional workload on
the cluster during our experiments. The input data are
stored in the large matrices where are stored input data
from 17 gauging stations (data includes the amount of snow
cover and location coordinates – latitude, longitude, alti-
tude). The output values depend on the time-consuming
computing process. Performance time is measured from the
assignment of workers to transfer the calculated results to
the master. In all cases it is assumed that the data was al-
ready present in the frameworks preferred storage location.
Measured time is recorded in the file time.txt. Outputs of
our experiments can be straightforward visualized by the
GIS Grass tool. We must note that the MPI implementa-
tion does not have strict limits of the number of processors
and the program can be run on larger number of nodes in
the future.

4.1 Measuring Time
The same way of obtaining of the measurement values

was applied for Micro configuration as well as for the Large
configuration. Since Amazon EC2 provides a Grid service,
it should be possible to predict the delay of the service
provider. Therefore, we performed three measurements and
we have chosen the smallest measured time (the differences
were at times in hundredths of seconds). The measure-
ments started from matrix of size 1000 × 1000 and grad-
ually increased for each measurement by 1000, to matrix
size 10000× 10000 what constitutes sufficient measured val-
ues to form some conclusions of the scheme. The greater
matrices were tested just to confirm what the cloud load
is able to calculate on the Large configuration. For exam-
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Figure 3: Chart of execution time depending on
problem size (raster size) and parallel computer ar-
chitecture.

ple, for the matrix of size 20000 × 20000 we found that the
output text file contains measured times the size to 1 GB.
Unfortunately we were not able to determine the outcomes
for the micro configuration bigger than 4000 × 4000 matrix
size, because the Amazon EC2 has not enough processing
power to execute such configuration.

Results of our experiments are matched in the chart, Fig-
ure 3, and in the Table 1.

The results in Table 1 show that the use of the computer
cloud gave comparable performance for geo-processing as
the use of multi-core processor. It should be noted that the
hardware used for comparison is less powerful than the actu-
ally available hardware. This fact emphasizes the advantage
of cloud. Cloud does not require users to upgrade hardware.
They have still modern and powerful hardware available.

5. CONCLUSION
This study evaluates the behaviour of the inverse dis-

tance weighted interpolation to accelerate snow cover depth
prediction on the current most popular cloud computing
provider Amazon EC2. We have demonstrated that clouds
offer attractive parallel computing paradigm for scientific
computation applications employing the spatial interpola-
tion method.

Power and scalability as well as low charge of cloud data
center, compare with the similar performance that GPGPU
or cluster computing, suggests that scientific computation
applications will increasingly be implemented on clouds. Clo-
ud computing offers convenient user interfaces and the sci-
entist or scientific institution is avoided only with little cost
overhead of keeping and managing their own computing
system.

Cloud computing proves some disadvantages as well. Since
cloud services are often remote, they require a constant In-
ternet connection and manipulation with cloud doesn’t work
well with low-speed connection. Additionally, there is not
direct management of the cloud resources for the user and it
is not clear if and how many other tasks are running on the
allocated computer and network influencing the performance
of the system. Moreover, a transfer and storage of large geo-
data sets can mean a time or cost burden of the computing
process. Other issue of cloud computing is the question of
security and privacy that needs to be ensured when execut-
ing the tasks in mostly remote locations which are controlled
by external parties, (especially for health data sets). But the
problems regarding transfer and storage of data as well as
trustworthiness of infrastructures are not specific only for
cloud infrastructures. They must be addressed for all kinds
of distributed architectures.

The cloud computing as a new parallel computing tech-
nique has wide prospect in field such as spatial interpolation,
so in the future we are planning to implement more efficient
algorithms via implementing other interpolation methods as
well as to implement different ways of decomposition for this
type of computing environment.
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